:::: MENU ::::
Showing posts with label Solution. Show all posts
Showing posts with label Solution. Show all posts

Thursday, November 28, 2024

Wireless LAN (WLAN) has evolved far beyond being a simple gateway for connecting devices like phones, tablets, and industrial computers. It has become a critical foundation for the Internet of Things (IoT), enabling advanced industrial applications that demand reliable and robust connectivity.

The rapid growth of IoT devices, combined with latency-sensitive applications like video streaming and real-time data processing, is straining the limits of traditional wireless networks. These networks struggle to manage the diverse and high-bandwidth demands, creating an urgent need for more efficient wireless solutions to support future innovations.

Wi-Fi 6 brings a host of advancements, making it a powerful choice for modern wireless networks. Below are some of its most significant benefits.

Better at Handling Multiple Devices

One of Wi-Fi 6's standout features is its ability to handle multiple devices more efficiently. It can send and receive data to several devices simultaneously within a single communication channel. By dividing a single channel into up to nine sub-channels, it allows various devices to communicate at the same time. This innovation significantly reduces latency and boosts the performance of networks crowded with numerous devices.

Improved Power Efficiency

The Target Wake Time (TWT) feature in Wi-Fi 6 dramatically reduces power consumption. TWT allows connected devices to stay inactive until their scheduled transmission time, conserving energy. This feature is particularly beneficial for industrial applications, as it extends the battery life of IoT devices and sensors, ensuring greater operational efficiency.

Faster Data Rates

Wi-Fi 6 offers up to 40% faster data transfer speeds than Wi-Fi 5. This improvement is enabled by technologies like 1024-QAM, which enhances spectral efficiency by embedding more data into each transmission, and the expanded bandwidth available in the 6 GHz band. Additionally, Wi-Fi 6 minimizes co-channel interference, further boosting network efficiency and data rates.

Backward Compatibility

Unlike Wi-Fi 5, which abandoned the 2.4 GHz frequency band, Wi-Fi 6 fully supports it. The 2.4 GHz band is still widely utilized for many low-bandwidth applications, and by retaining compatibility, Wi-Fi 6 ensures the best use of this frequency band, offering flexibility for a broad range of scenarios.

Conclusion

Wi-Fi 6 enables reliable connections for more devices within a single network, with faster speeds, lower latency, and better support for high-density environments.

This is crucial for IoT devices in industries like manufacturing, healthcare, and automotive, where stable and efficient connectivity is essential.

At MACTRON GROUP (MTG), we realize how Wi-Fi 6 opens doors for new use cases to wirelessly collect, analyze, interact, and use real-time information. That’s why we feature the latest Wi-Fi 6 modules in our new launches

Check out MACTRON GROUP (MTG)’s MTP Series. Our MAS and MAA features an Intel Processor and ARM SoC, providing a reliable, secure and remotely manageable computing systems. It can meet all your business needs, optimize job procedures, and save the cost of manageability. Contact MACTRON GROUP (MTG) for more information.

Friday, November 1, 2024


 In today's digital era, Windows and Android systems are widely used across various fields due to their exceptional performance and flexibility, significantly impacting our lives and work.

Then why are Windows and Android widely used? The main reason is that these two systems support many applications in industrial settings. We can elaborate on this in more detail through the following descriptions, origins, and advantages.

Windows

Use of Windows

The Windows system, developed by Microsoft, is primarily used in personal computers and enterprises, supporting a variety of applications, including professional software and games. It is commonly employed in homes and offices, providing powerful productivity tools and security. Particularly in industrial applications, many professional software solutions are specifically designed for Windows, making it suitable for long-running automation and control systems. Additionally, many schools and universities utilize Windows for teaching and research purposes.

Windows systems offer high security and stability, with regular updates. Major versions include Windows 1.0, 95, XP, 7, 10, and the latest Windows 11, which features a new interface, improved multitasking, and enhanced application management capabilities.

Advantages of Windows:

  • Stability and Reliability:
    Ideal for long-term operation and high-load environments, especially in industrial applications.

  • Rich Application Support:
    Many industrial automation and control software are specifically designed for Windows.

  • Security:
    Regular updates provide strong security protections.

  • Hardware Compatibility:
    Broad support for various industrial devices, facilitating integration.

  • Multitasking Capability:
    Suitable for systems that need to run multiple applications simultaneously.

Android

Use of Android

The Android system, developed by Google, has become the mainstream choice for smartphones and tablets, attracting numerous developers. As the most popular mobile operating system, Android is widely used across various mobile devices and is favored by consumers for its rich applications and customization features.

Android is also increasingly prevalent in Internet of Things (IoT) devices, with many smart home and wearable devices utilizing this system, providing convenient control and management functionalities. Moreover, due to its open-source nature, developers can easily create and deploy applications, fostering a thriving ecosystem.

Major Versions: Android versions range from 1.5 to 15, with the latest Android 15 enhancing privacy protection and battery management while optimizing multitasking and notification management features.

Advantages of Android:

  • Openness and Flexibility:
    The open-source nature allows developers to customize the system according to their needs.

  • Cost-effectiveness:
    Compared to Windows, Android reduces hardware and licensing costs, making it suitable for budget-constrained applications.

  • User-friendly Touch Interface:
    Ideal for Human-Machine Interface (HMI) applications.

  • Rapid Development and Deployment:
    With abundant development resources, application development and deployment are efficient.

  • IoT Integration Capability:
    Facilitates the realization of smart factories.

Conclusion

Whether it is Windows or Android, their widespread usage reflects their excellent performance and rich application ecosystems, providing users with a positive experience. As technology continues to advance, we can foresee that Windows and Android will continue to play vital roles in meeting the ever-evolving digital needs of society.

MAA SeriesMAS Series
MAA Series & MAS Series

Check out MACTRON GROUP (MTG)’s MTP Series. Our MAS and MAA features an Intel Processor and ARM SoC, providing a reliable, secure and remotely manageable computing systems. It can meet all your business needs, optimize job procedures, and save the cost of manageability. Contact MACTRON GROUP for more information.

Monday, September 30, 2024


In recent years, USB Type-C has become the universal standard for modern devices, including smartphones, laptops, tablets and other electronics. However, one of its most impactful applications is in rugged tablets, where reliability, durability, and flexibility are important. Rugged tablets are specifically designed for use in harsh environments such as industrial production line, field services, and some of military operations. In these challenging applications and environments, the advanced features of USB Type-C offer significant advantages that enhance both functionality and performance.

The Evolution of USB Leading to USB Type-C


The development of USB Type-C marks a significant evolution in the Universal Serial Bus (USB) standard, which was initially introduced in the 1990s to standardize connections between computers and peripherals. Over the years, USB technology has advanced to accommodate the increasing demands of modern devices for faster data transfer, higher power delivery, and more versatile connectivity. USB Type-C, introduced in 2014, represents a response to these growing needs.
  1. Early USB Standards:
    • USB 1.0 and 1.1 (1996-1998): The first USB standard was created to simplify the connection between computers and peripherals such as keyboards, mouse, and printers. It provided speeds of 12 Mbps.
    • USB 2.0 (2000): This version brought a significant upgrade, increasing data transfer rates to 480 Mbps. It became widely used for external storage devices, camera, and other peripherals. However, limitations started to appear as devices became more powerful and required faster data transfer.

  2. USB 3.0 and 3.1 (2008-2013)
    • USB 3.0 (2008): With the advent of HD video and other data-intensive applications, USB 3.0 introduced the data transfer speeds of up to 5 Gbps. It became a major step forward, but it still retained the larger, non-reversible USB-A connector.
    • USB 3.1 (2013): This update increased speeds to 10 Gbps (also known as SuperSpeed+) and introduced improved power delivery. But it still used the older connectors.

    These advancements in speed and power capabilities highlighted a need for a more efficient, future-proof connector that could handle the growing demands for faster data transfer, greater power output, and seamless usability. This led to the introduction of USB Type-C.

  3. USB Type-C (2014)
    USB Type-C was developed by the USB Implementers Forum (USB-IF) which aim to standardize and evolve USB technology. USB Type-C was released in 2014 and designed as a universal connector that would address many of the limitations of earlier USB standards.
Key Features of USB Type-C
  1. Reversible Design: Unlike its predecessors (USB Type-A, Micro-USB), the USB Type-C connector is fully reversible, meaning users can plug it in either way without worrying about orientation.
  2. Compact Size: USB Type-C is much smaller than USB Type-A and Type-B connectors, making it ideal for modern, slim devices like smartphones, laptops, and tablets.
  3. High Data Transfer Rates: USB 3.1 (the first standard that introduced USB TYPE-C) supports speeds of up to 10 Gbps. Later revisions like USB 3.2 and USB4 offer even faster speeds, up to 40 Gbps. Power Delivery (PD): USB Type-C supports the USB Power Delivery standard, allowing for significantly higher power output (up to 100W). This enables it to charge larger devices such as laptops, monitors, and even external batteries.
  4. Video and Audio Transmission: USB TYPE-C can also carry video signals, supporting standards like DisplayPort and HDMI.
  5. Universal Adoption: USB TYPE-C has been adopted across a wide range of devices including smartphones, laptops, tablets, gaming consoles, and accessories. It is seen as a standard for the future electronics.

Why USB Type-C is Ideal for Rugged Tablets…


Durability and Reversibility
Rugged tablets are often used in demanding conditions where quick and reliable connections are crucial. The reversible design of USB Type-C means users don’t have to worry about the direction of plugging in cables, reducing wear and tear on ports, which is critical in environments where dust, moisture, and impact are common.

Fast Data Transfer for Critical Operations
Rugged tablets are often used to transfer large amounts of data, whether it’s for inventory management in a warehouse or real-time field data collection. USB Type-C supports high-speed data transfer protocols like USB 3.2 and USB4, enabling data rates of up to 40 Gbps. This allows users can quickly sync large files, transfer data, or connect external devices ensuring that workflows are not disrupted by slow transfer speeds.

Power Delivery (PD) for Charging
The Power Delivery feature of USB Type-C is particularly useful for rugged tablets, which are often used in mobile, outdoor, or remote locations. With up to 100 watts of power delivery, Type-C can efficiently charge rugged tablets in the field, where downtime can be costly. Additionally, USB PD allows for intelligent power negotiation, ensuring that the device receives the appropriate amount of power, extending battery life and preventing overheating during long usage periods.

Enhanced Connectivity with Peripherals
Alternate Modes of USB Type-C allows rugged tablets to output video and audio via a single port.

Future-Proof Design for Evolving Workflows
As technology continues to advance, the demands on rugged tablets grow. USB Type-C is future-proof, supporting backward compatibility with legacy USB devices while also accommodating emerging technologies. For industries like manufacturing, logistics, and healthcare, where rugged tablets play a critical role, this ensures that the devices can continue to integrate with new tools and systems over time.

Conclusion: The USB Type-C Advantage in Rugged Tablets

The combination of durability, high-speed data transfer, power delivery, and flexibility of USB Type-C makes it a perfect match for rugged tablets. These devices are essential for professionals working in extreme environments, and the advanced capabilities of USB Type-C help ensure they perform reliably, regardless of the conditions. As rugged tablets continue to evolve, USB Type-C will remain the basement of their design of their design, enhancing their ability to meet the demands of modern industrial and field applications.
MAS SeriesMAA Series

Check out MACTRON GROUP (MTG)’s MTP Series. Our MAS and MAA features an Intel Processor and ARM SoC, providing a reliable, secure and remotely manageable computing systems. It can meet all your business needs, optimize job procedures, and save the cost of manageability. Contact MACTRON GROUP for more information.

Friday, August 30, 2024


In modern technological life, satellite navigation is an integral part of our daily life. Applications such as mobile and tablet location services and traffic navigation rely heavily on satellite navigation technology. Satellite navigation brings significant convenience to our lives. When multiple satellite systems work together, they complement each other and enhance accuracy. This blog will provide an introduction of GNSS (Global Navigation Satellite System) to help you better understand and utilize this technology.

“GNSS” is …


GNSS is the abbreviation of Global Navigation Satellite System. It encompasses various satellite-based systems used to provide global positioning, navigation, and timing information. And the client side refers to all individuals who receive satellite signals from the GPS system. There are four main GNSS systems in operation around the world:
  1. GPS (Global Positioning System): Operated by the United States, it's one of the most well-known GNSS systems. GPS is designed by the United States Department of Defense, is a global, all-weather, 24-hour three-dimensional positioning system. It is used in various applications such as traffic navigation and construction surveying, providing precise location and time information, which can then be used to calculate speed and direction of movement.

  2. GLONASS: It is developed by Russia for national defense purposes, was later made available for civilian use. It's another major system that provides global navigation services. Its main components and positioning rules are similar to GPS, as both systems use distance measurements for positioning.

  3. Galileo: It is developed by the European Union, operates independently of the GPS and GLONASS systems. Primarily intended for civilian use rather than military applications, Galileo aims to provide high-precision positioning and timing services., it aims to offer high-precision positioning services.

  4. BeiDou: It is an independently developed satellite system by China. It provides navigation services globally and is expanding its capabilities. BeiDou shares a similar structure with the previously mentioned systems but features unique functions such as "short-message communication" and "target positioning." These functions not only allow users to determine "where they are" but also enable them to share their location with others, making it especially useful in emergency rescue situations.
These systems work by using a constellation of satellites in orbit around the Earth. Devices equipped with GNSS receivers can determine their location, speed, and time by receiving signals from multiple satellites and calculating their distance from each one.

Advantages of GNSS


Global Coverage
GNSS provides worldwide coverage, enabling accurate location and timing information anywhere on the Earth's surface. This is crucial for global navigation and positioning.

High Accuracy
Modern GNSS systems can provide highly accurate position information, often within a few meters, and even better with advanced techniques like differential GNSS.

Real-Time Data
GNSS systems offer real-time positioning and timing data, which is essential for applications that require immediate feedback, such as autonomous vehicles, maritime navigation, and emergency response.

Wide Application Range
GNSS supports a diverse range of applications including aviation, marine navigation, surveying, agriculture, mapping, and personal navigation. It enhances the efficiency and safety of these activities.

Enhanced Timing
GNSS provides precise timekeeping, which is crucial for telecommunications, financial transactions, and various scientific research applications. The timing provided by GNSS systems is often more accurate than other methods.

Increased Safety
For transportation systems (cars, aircraft, ships), GNSS improves safety by providing accurate navigation and collision avoidance capabilities. It also supports search and rescue operations by pinpointing the location of distress signals.

Operational Efficiency
In sectors like agriculture and logistics, GNSS improves efficiency by enabling precise mapping, monitoring, and management of resources. This can lead to better crop yields, optimized routes, and reduced costs.

Disaster Management
GNSS is valuable for disaster response and management by providing accurate information on affected areas, supporting evacuation plans, and aiding in the assessment of damage.

Conclusion

GNSS has significant potential in emerging industries, including smart cities, logistics and transportation, big data analytics, and IoT communication, among others. Also, it enhances many aspects of modern life by providing reliable and precise location and timing information. That’s why this technology is built into almost mobility tablet PC. We hope this blog helps you understand of GNSS technology briefly.
WCP SeriesWCP Series

Check out MACTRON GROUP (MTG)’s MTP Series. Our MAS, MAA and MAV series features an Intel Processor and ARM SoC, providing a reliable, secure and remotely manageable computing systems. It can meet all your business needs, optimize job procedures, and save the cost of manageability. Contact MACTRON GROUP for more information.

Tuesday, July 30, 2024


 

With remote work now commonplace, users need a computing experience that empowers productivity wherever they may be. Intel vPro® platform with 12th Gen Intel Core processors meets these technology trends and offers a wide range of computing options to empower all businesses. Intel vPro® technology is primarily targeted at businesses that need reliable, secure and remotely manageable computing systems. This blog will provide an introduction of vPro® to help you better understand and utilize this technology.

Features of Intel vPro® Technolgy


Intel vPro® is a platform that includes a combination of hardware and technologies for advanced security, performance, manageability, and stability. Key features are as below.

Remote Management
One of the standout features of vPro® is Intel's Active Management Technology (AMT), which allows IT administrators to remotely manage, diagnose, and repair systems even when they are powered off or the operating system is unresponsive. This is especially useful for troubleshooting and maintaining systems that users don't need to be there.

Security Enhancements
Intel vPro® technology includes several security features such as Intel Hardware Shield for below-the-OS protection, Intel Trusted Execution Technology (TXT) for secure boot processes, and Intel Software Guard Extensions (SGX) which create secure ways for sensitive data processing.

Performance
Intel x86 Systems with vPro® technology can come with either Intel Core i5 or i7 processors, offering different levels of performance to suit each kind of business needs, from basic office applications to more demanding tasks like graphics and software development.

Connectivity
Intel vPro® technology supports various communication ways, including the latest Wi-Fi 6E for faster and more reliable internet connections. It also enables out-of-band(OOB) management over both types of connections, providing flexibility in various network environments.

Integration with IT Systems
Intel vPro® technology integrates with common IT management software like Microsoft System Center Configuration Manager (SCCM) and Intel Endpoint Management Assistant (EMA), making it easier for IT departments to incorporate into existing workflows.

Use cases of vPro® Technology


Remote IT Support
IT departments can use vPro® to remotely manage and repair systems, reducing downtime and the need for on-site visits.

Security Management
Companies can ensure all devices are secure and up-to-date with the latest security patches and configurations.

System Audits and Compliance
Intel vPro® technology allows for efficient auditing of hardware and software configurations to ensure compliance with organizational policies.

Conclusion

Intel 12th Gen Core processors feature a new architecture consisting of performance cores and efficient cores that excel at single-threaded and multi-threaded software environments. This architecture empowers users to be more productive and have higher performance from their PC. The Intel vPro® technology delivers professional-grade performance with a comprehensive set of capabilities to help protect and manage the computing systems and it is the most beneficial for various enterprises with managed IT environments, but it also offers significant advantages for smaller businesses that prioritize robust security and manageability. We hope this blog helps you understand of Intel vPro® technology, the benefits for your business and save your business cost.
WCP Series

Check out MACTRON GROUP (MTG)’s new WCP Series features an Intel 12th Gen Core-i processor with Intel vPro® technology support, providing a reliable, secure and remotely manageable computing systems. It can meet all your business needs, optimize job procedures, and save the cost of manageability. Contact MACTRON GROUP for more information.

Monday, May 27, 2024


In today’s data-driven world, edge computing is rapidly becoming a crucial technology for industrial and commercial applications. As a global leader in embedded solutions, MACTRON GROUP's WCP Series Panel PC offers powerful capabilities and flexibility, making it an ideal choice for edge computing applications. This article will explore the importance of edge computing and delve into how the WCP Series Panel PC excels in this field.

The Importance of Edge Computing

Edge computing is a computing model that moves data processing and storage closer to the data generation source, rather than relying on centralized data centers. The main advantages of this model include:
  1. Reduced Latency:
    Immediate data processing reduces transmission time, enabling applications to respond quickly.
  2. Decreased Bandwidth Requirements:
    Local data processing minimizes the need to upload data to the cloud, saving bandwidth costs.
  3. Enhanced Security and Privacy:
    Sensitive data is processed locally, reducing the risk during network transmission.
  4. Improved Reliability:
    Local devices can continue operating and processing data even if network connectivity is unstable. They typically have higher reading ranges and communication speeds.

Technical Specifications of the WCP Series Panel PC


The WCP Series Panel PC from MACTRON GROUP is designed to meet the demands of edge computing, with technical specifications including:
  • High-Performance Processor:
    Equipped with the latest Intel processors, providing robust computing power suitable for complex data analysis and applications.
  • Rugged Design:
    Industrial-grade rugged design ensures stable operation in harsh environments, with dust and water resistance rated at IP65.
  • Rich I/O Interfaces:
    A variety of I/O interfaces, including USB, Ethernet, and serial ports, facilitating connections with various sensors and devices.
  • High-Resolution Display:
    21.5-inch or 15.6-inch full HD display offers clear visual effects, facilitating monitoring and operation.
  • Flexible Installation Options:
    Supports VESA and panel mounting, adapting to various application scenarios.

Applications of WCP Series in Edge Computing


Smart Manufacturing
In the field of smart manufacturing, the WCP Series Panel PC can monitor the operating status of production lines, collecting and analyzing data from various sensors in real-time. Its high-performance processor can quickly process large amounts of data, promptly identifying and warning of production anomalies, thereby improving production efficiency and product quality.

Smart Cities
For smart city applications, the WCP Series can be deployed in traffic management, public safety, and other areas, processing data from cameras and traffic sensors in real-time to provide monitoring and decision support. For example, in traffic management, the WCP Series can analyze traffic flow data in real-time, optimizing signal light control to reduce congestion.

Retail Industry
In the retail industry, the WCP Series can be used in smart retail terminals, providing real-time sales data analysis and customer behavior monitoring. This helps retailers adjust inventory, optimize product placement, and enhance customer service quality based on real-time data.

In summary, PCIe 5.0 offers higher transfer speeds, greater bandwidth, better compatibility, and stronger security compared to PCIe 3.0, making it the preferred interface standard for current and future high-performance computing and data center applications.

Future Prospects of Edge Computing

With the explosive growth of IoT devices and data volumes, edge computing will play an increasingly important role in the future. The powerful performance and flexibility of the WCP Series Panel PC enable it to meet the needs of various edge computing applications, helping businesses achieve data-driven innovation and value creation.

Conclusion

WCP Series

The WCP Series Panel PC from MACTRON GROUP is a high-performance device specifically designed for edge computing, offering robust processing power and flexible application scenarios. As edge computing evolves, the WCP Series will play a crucial role in the future, helping businesses improve efficiency, reduce costs, and enhance competitiveness. Explore MACTRON GROUP’s new WCP Series, available in 21.5-inch and 15.6-inch sizes, combining high performance with sleek design to meet all your edge computing needs. Contact MACTRON GROUP for more information.

Wednesday, February 28, 2024

Active Current Compensation (ACC) refers to a technique used in power electronics to mitigate or eliminate undesirable current harmonics or distortions in electrical systems. The trigger mechanism initiates the compensating action to mitigate these unwanted harmonics and maintain the quality of the electrical power. The following will briefly introduce the existing ACC technology and the factors of trigger ACC.


Technology of Active Current Compensation



The primary objective of ACC is to maintain the sinusoidal shape of the current waveform and ensure that it closely follows the fundamental frequency of the electrical system. By doing so, ACC helps to improve power quality, reduce losses, and prevent adverse effects such as voltage distortion, overheating of equipment, and interference with other electrical devices.

There are several methods and devices used to implement ACC, including:

Active Harmonic Filters (AHFs):
These are electronic devices that actively inject compensating currents into the electrical system to cancel out harmonic currents generated by nonlinear loads. AHFs typically use power electronics converters, such as voltage-source inverters, to generate the compensating currents.

Active Power Filters (APFs):
Similar to AHFs, APFs are devices that inject compensating currents into the system to mitigate harmonic distortions. In addition to compensating for harmonic currents, APFs can also provide reactive power compensation and voltage regulation.

Active Front-End Converters:
In some applications, such as variable frequency drives (VFDs) and uninterruptible power supplies (UPS), active front-end converters are used to control the input current waveform to the system. These converters actively shape the current waveform to reduce harmonic content and improve power factor.

Digital Signal Processing (DSP) Control:
ACC systems often employ digital signal processing techniques to analyze the current waveform and generate compensating signals in real-time. DSP-based control algorithms can adapt to changing system conditions and effectively compensate for harmonic currents over a wide range of operating conditions.

Trigger of Active Current Compensation



ACC plays a critical role in modern power systems. By actively compensating for harmonic currents, ACC helps to maintain power quality and ensure the stable operation of electrical systems. The trigger for ACC can be based on various factors, including:

Current Monitoring:
ACC systems continuously monitor the current waveform using sensors or measurement devices. When the current waveform deviates from the desired sinusoidal shape or exceeds predefined harmonic distortion limits, the ACC system is triggered to take corrective action.

Voltage Monitoring:
In some cases, ACC systems may trigger based on voltage measurements, especially if voltage distortions are correlated with current distortions. Voltage monitoring helps detect system-wide disturbances that may affect power quality and trigger compensating action accordingly.

Predefined Thresholds:
ACC systems often have predefined thresholds for harmonic distortion levels or power quality indices. When the measured values exceed these thresholds, the ACC system is triggered to activate compensating devices or algorithms to mitigate the disturbances.

Control Signals:
In systems with centralized control, such as active harmonic filters (AHFs) or active power filters (APFs), the trigger may be initiated by control signals from a central controller or supervisory system. These control signals are based on real-time analysis of system conditions and trigger compensating action as needed.

User Commands:
In some applications, users may have the ability to manually trigger ACC operation based on their specific requirements or preferences. For example, users may activate ACC to mitigate harmonic distortions during critical operations or when sensitive equipment is in use.

Benefits of Applying Active Current Compensation in Industrial PC Field



Applying ACC in the industrial PC field offers several benefits:

Improved Power Quality:
ACC can monitor and compensate for harmonic distortions and voltage fluctuations in the electrical grid, enhancing the power quality of industrial PC systems. A stable power supply helps reduce equipment failures and enhances system reliability.

Equipment Protection:
ACC reduces the risk of equipment damage and failures caused by harmonics and voltage fluctuations. By promptly compensating for current distortions in the grid, ACC protects industrial PCs and related equipment, prolonging their lifespan.

Enhanced Energy Efficiency:
ACC optimizes the power factor of industrial PC systems and reduces energy losses resulting from harmonic currents and voltage fluctuations. Improved energy utilization helps lower energy costs and boost system efficiency.

Reduced Downtime:
A stable power supply minimizes production downtime due to equipment failures and power quality issues. ACC ensures the reliable operation of industrial PC systems, reducing the risk of production interruptions.

Increased Productivity:
Stable power supply and equipment protection improve productivity. The continuous and reliable operation of industrial PC systems ensures production continuity and reliability, leading to increased productivity.

Lower Maintenance Costs:
By reducing equipment failures and extending equipment lifespan, ACC lowers maintenance costs. A stable power supply helps reduce equipment maintenance and repair frequency, lowering maintenance expenses.

In summary, implementing ACC in the industrial PC domain improves power quality, protects equipment, enhances energy efficiency, reduces downtime, increases productivity, and lowers maintenance costs. This ensures stable and reliable power support for industrial production, ultimately enhancing overall production efficiency.

Take a look at the MAV series of MACTRON GROUP(MTG).
MAV Series

Our MAV series products are all equipped with ACC input, which can support you to detect and respond to harmonic distortions, and contribute to improved system performance, energy efficiency, and overall reliability. Contact us for more information on which MAV product is adequate for you.

Friday, November 25, 2022




With the advent of Industry 4.0, AIoT is transforming our life into an information ecological chain. The central control system is the largest part of factory automation. Nowadays, most factories maintain efficacy and precision to implement highly responsive resource allocation by using CNC technology and HMI system.

When your WAM meets HMI


To achieve real-time monitoring, it is necessary to rely on the HMI system to achieve the purpose. The terminal data machine equipped with WAM will combine the data of each stage in the factory and transmit it to any cloud you use, whether it is AWS, GCP, or Azure.

The function of HMI


HMIs are used to optimize an industrial process by digitizing and centralizing data for a viewer. It can be used for monitoring and tracking, or for switching machines off and increasing production speed. By leveraging HMI, operators can see important information displayed in graphs, charts, and also view and manage alarms, all through one console.

Previously, operators would need to walk the floor constantly to review mechanical progress and record it on a piece of paper or a whiteboard. Now HMI technology eliminates the need for this outdated practice and thereby reduces many costly problems caused by lack of information or human error.


WAM applies to all industrialists


According to the Wirtschaftswoche in 2021, in Germany, factories that have moved to HMI systems in the past five years have reduced their manufacturing costs by about 27%, and the conversion profits are billions of euros, far beyond our imagination. This shows the combination of these devices and systems is an inevitable trend.




Check out MACTRON GROUP(MTG)’s brand new WAM Series. Our Panel Mount Touch Panel PC can adapt to all kinds of work environments with powerful performance, and combine with the HMI system. It can meet all your imagination.

Thursday, October 27, 2022


 
In this era of COVID-19, people now are turning increasingly to the ease of online shopping. Physical stores can no longer rely on the traditional transactional model and need to enhance the shopping experience in new ways. Self-checkout through RFID is one of the most effective ways.

How does the RFID self-service checkout system work?

1. Tag Merchandise

Retailers that introduce self-checkout systems need to attach RFID tags to all items for self-checkout purposes and to help prevent loss and returns. Staff may also use the RFID function of the Mobile Tablet PC to quickly organize product information.


2. Read Merchandise

The self-checkout system uses RFID to scan the labels on the goods, and customers only need to put the item on the counter, then approach their mobile phones or smartwatches at the payment sensor to complete the payment. If there is any problem in the payment process, they can also use their cards to check out at the end screen.

3. See Merchandise

Retailers can integrate all RFID-tagged products through AIoT, and then analyze data such as inventory and sales status to improve operational efficiency and customer experience.



RFID Self-Checkout is for any industry


According to a report from Duke University. Walmart generates nearly $1.5 billion in profits annually from self-checkout systems. However, the technology isn't exclusive to big corporations. As technology has evolved, RFID deployment has spread into new fields, now even independent clothing stores or convenience stores can see profits and growth through this technology.



Want to take a big step forward in the self-checkout system? Check out MACTRON GROUP(MTG)’s DRS Series & MCA Series. Our Touch Panel PC & Mobile Tablet PC supports various functions, such as RFID, NFC, MSR, and Barcode Scanner for all your needs.

Friday, August 26, 2022




 When it comes to our health, especially in matters of life and death, the promise of artificial intelligence (AI) to improve outcomes is very intriguing. From hospital care to clinical research, drug development to insurance, AI applications are recasting the workings of the health sector to cut down on spending and enhance the outcomes of the patient.

3 Powerful AI Advances in Medical Healthcare

1. Vertical Nursing Assistants

An AI virtual assistant offers personalized experiences to patients. It helps them to identify their illness based on the symptoms, monitor their health status, schedule doctor appointments, and do more.

Instead of searching for the causes of the symptoms that you are suffering from, you can ask the virtual nursing assistant to guide you through. Moreover, the virtual assistant would be available 24/7, which means it can answer your questions and provide answers in real-time.


2. Image Analysis

Currently, image analysis is very time-consuming for human providers. AI Image analysis can analyze 3D scans up to 1,000 times faster than what is possible today. This near real-time assessment can provide critical input for surgeons who are operating. It is also hoped that AI can help to improve the next generation of radiology tools that don’t rely on tissue samples.


3. Robotic Surgeries

Robots enabled with AI are increasingly assisting microsurgical procedures to help reduce surgeon variations that could affect patient recovery. This will help reduce surgical variation and its attendant inefficiencies and poor outcomes, as surgeons better understand the techniques that align with better outcomes. In addition, those insights can link to a patient’s post-operative and long-term health outcomes.



Check out MACTRON GROUP(MTG)’s WMP Series & MMS Series, our Medical Grade Touch Panel PC to enhance the standard of care in all medical facilities. Provide medical certification to ensure compliance with your medical needs and it’s ideal for medical healthcare segments.

Tuesday, August 2, 2022



What is Aluminum Die Casting?

Cast aluminum is created when aluminum heated to extremely high temperatures. The molten aluminum is then molded into a shape and cooled to craft a wide variety of products.



Aluminum Die Casting vs. Regular Aluminum

They may sound to be exactly the same. However, there are some differences.
Products made from regular aluminum will definitely have a lower price point, but this is due to its lower quality. While aluminum does not get as hot in high temperatures, it doesn’t provide the same amount of strength. Regular aluminum can dent and scratch easily, so the products produced with it will show more wear and tear more quickly.

Advantages of Aluminum Die Casting Housing Product

High Strength & Hardness

The Microstructure of aluminum casting parts near the surface layer is fine and dense, which makes aluminum casting parts have high strength, hardness, good wear resistance and corrosion resistance.

Good Surface Quality & High Precision

The dimensional accuracy of aluminum casting parts can reach the highest level. Aluminum casting parts have good interchangeability and can produce aluminum casting parts with complex shapes, clear outlines and thin walls and deep cavities. The minimum wall thickness of aluminum casting parts is 0.5mm. At the same time, it can cast clear characters and patterns.


WCP Series & WMP Series
WCP Series / WMP Series
  • Windows System
  • Intel Alder Lake Processor
  • Aluminum Die Casting Housing
  • Fanless & Front Panel IP65
  • Rich & Flexible I/O Port Design
  • Magnetic I/O Port Cover For Easy Maintaining (Optional)

Check out MACTRON GROUP(MTG)’s WCP Series & WMP Series, we proudly incorporate aluminum die casting housing to provide a gorgeous outlook with high strength and good surface quality for everyone.